Chapter Corner

Making a Secure Connection with Flexible Cable

With the increasing use of fine-stranded, flexible conductors, especially for alternative energy applications, there has arisen some confusion over the proper connectors and lugs to use. The National Electrical Manufacturers Association (NEMA) recently issued a bulletin (No. 105, dated April, 2012) advising the industry that mechanical set-screw connector lugs and terminals are not intended for use with fine-stranded conductors.

Although mechanical set-screw connectors are commonly used in applications where solid, B or C-Code cables are used, they are not recommended for use with fine-stranded flexible conductor cable, because the mechanical connection can cause breakage of the fine strands, resulting in overheating and wire pullout. NEMA calls for compression-type connectors when terminating fine-stranded flexible conductor cable.

Here are guidelines for selecting the proper com-pression connectors and terminals for these appli-cations, as well as the proper method for installing these connectors to ensure a secure, trouble-free termination.

Matching the connector to the cable

Flexible-conductor cable, commonly known as flex cable, has become increasingly popular in the past few years. Flex cable is easier to maneuver in tight spaces, particularly with larger sizes, as well as when cable movement is prevalent, such as in wind turbine applications.

There are many different flex cable classifications and strands, so care should be taken to match the connector to the proper cable type (See Figure A).

Some connectors are dual rated for both code and flex cable, while others require a different con-nector for each application. The connectors should clearly identify the proper application, whether B or C-Code, or flex-type cables. This is in compliance with UL standard 486 A–B that states, “A connector, a unit container, or an information sheet packed in the unit container for a connector tested with conductors other than Class B, SIW, or Class C stranding shall also be marked with the conductor class or classes and the number of strands.”

Compression connectors come in almost limitless variety that includes one and two-hole lugs, butt splices, H-taps and C-taps, to name only a few. They also are available for copper, aluminum, or copper-clad aluminum conductors. Compression connectors offer a number of advantages over mechanical con-nectors: the connection is permanent when properly installed with the correct tooling and it cannot be loosened accidentally. The connection is irreversible, which is sometimes required for grounding applica-tions. The low-profile crimp is easy to insulate. Some connectors also are available with an oxide inhibitor. The disadvantages are that each conductor size requires its own connector, and crimp tooling is needed to make a proper connection.

An overview of crimping styles

When it comes to installing compression con-nectors, electrical contractors traditionally had two choices in crimping methods: the indent-style crimp, made by die-less compression tools; or the hex-style crimp, made by compression tools equipped with interchangeable hex dies.

Indent-style Crimp

When correctly performed with a proper tool that corresponds to the size of cable and connector, the indent-style crimp offers reliable electrical per-formance and excellent pullout resistance. With an indent-style crimp, the connector is left with rounded edges and no flash. Also, virtually all air gaps are removed from the conductor as the strands are formed tightly together inside the connector. The indent-style crimp, however, does not provide the ability to inspect for a proper crimp.

Hex-style Crimp

The hex-style crimp has long been preferred as the industry standard for crimping compression connectors onto B and C-Code copper, and aluminum/ copper cables up to 1,000 kcmil. The hex-style crimp provides superior electrical performance and excellent pullout strength. Plus, hex dies emboss the die code onto the connector for easy inspection and verification of a proper crimp after installation.

Hex-Flex®  Die System

A new, third method of attaching connectors to flexible conductors has recently been introduced that combines the best of the indent and hex-style crimp: superior pull-out ratings, the ability to inspect for a proper crimp. The hex portion keeps the traditional color-coding and die embossing for easy identification and inspection. The indenter is round and smooth and produces the higher pull-out values across all types of flex cables. Due to the higher pull-out values created by the Hex-Flex® system, it also reduces the number of crimps required on most connectors.

Steps for Proper Connector Installation

Installing a compression connector properly is quick and easy with the right tools:

1) Prepare the cable – Strip the insulation carefully to avoid marring or cutting the conductors. Be careful to strip the insulation to the proper length so that the conductors can be fully inserted into the connector barrel, but not so long that bare wire is exposed.

2) Determine the proper connector – Compression connectors come marked indicating the proper application. These markings are clearly visible on the connector, as well as on product packaging and enclosed literature. Be sure to match the connector to the application.

The connectors are marked with several important pieces of information:

  • Manufacturer;
  • Application by color and die code;
  • Wire size;
  • Crimp indicator bands; and
  • UL and/or CSA listings

Connectors marked with just the cable size or “CU” should be used on copper conductors only. Connectors marked “AL( )” with a cable size should be used on aluminum conductors only. Connectors marked “AL( )CU” with the cable size may be used on aluminum or copper conductors.

3) Choose the tool and proper die – There is awide range of tools, from manual tools to battery-operated hydraulic crimping tools, to make installing compression connectors easier.

The Color-Keyed® method simplifies the selection of the proper installing die to match the tool. Color-Keyed® connectors have colored bands or colored dots that correspond to the colored markings on the dies. Connectors and dies also have a die code number marked or stamped on them. Dies have a code number engraved on the crimped surface.

4) Creating the crimp – Locate the markings onthe connector and die. Keep fingers away from the crimping mechanism. Insert the connector into the tool and position and align the die and the connector.

When making multiple crimps, make the first one nearest the tongue and work toward the barrel end. Connectors are banded with color stripes to indicate the number and location of each crimp. The connectors are also marked with the die code num-ber at each compression location.

When properly crimped, the die code number will be embossed on the connector for easy inspec-tion to determine if the correct die and connector combination were used.

With the increasing use of fine stranded, flexible conductor cable in a variety of alternative energy and data applications, care must be taken to use the proper connector and connection method. Compression connectors should be used instead of mechanical connectors, and care must be taken to ensure that the installation has been properly made. By following the steps outlined above, electrical con-tractors will be following NEMA and UL-approved methods.

Chad Smith is the director, product management at Thomas & Betts, an IEC National Platinum Partner.